Нейман Джон фон
Нейман Джон фон
28.12.1903 — 08.02.1957

Нейман Джон фон — Биография

Джон фон Не́йман (англ. John von Neumann; или Иоганн фон Нейман, нем. Johann von Neumann; при рождении Я́нош Ла́йош Не́йман, венг. Neumann János Lajos; 28 декабря 1903, Будапешт — 8 февраля 1957, Вашингтон) — венгро-американский математик еврейского происхождения, сделавший важный вклад в квантовую физику, квантовую логику, функциональный анализ, теорию множеств, информатику, экономику и другие отрасли науки.

Наиболее известен как праотец современной архитектуры компьютеров (так называемая архитектура фон Неймана), применением теории операторов к квантовой механике (алгебра фон Неймана), а также как участник Манхэттенского проекта и как создатель теории игр и концепции клеточных автоматов.

Янош Лайош Нейман родился старшим из трёх сыновей в состоятельной еврейской семье в Будапеште, бывшем в те времена второй столицей Австро-Венгерской империи. Его отец, Макс Нейман (венг. Neumann Miksa, 1870—1929), переселился в Будапешт из провинциального городка Печ в конце 1880-х годов, получил степень доктора от юриспруденции и работал адвокатом в банке. Мать, Маргарет Канн (венг. Kann Margit, 1880—1956), была домохозяйкой и старшей дочерью (во втором браке) преуспевающего коммерсанта Якоба Канна — партнёра в фирме «Kann—Heller», специализирующейся на торговле мельничными жерновами и другим сельскохозяйственным оборудованием.

Янош, или просто Янчи, был необыкновенно одарённым ребёнком. Уже в 6 лет он мог разделить в уме два восьмизначных числа и беседовать с отцом на древнегреческом. Янош всегда интересовался математикой, природой чисел и логикой окружающего мира. В восемь лет он уже хорошо разбирался в математическом анализе. В 1911 году он поступил в Лютеранскую Гимназию. В 1913 году его отец получил дворянский титул, и Янош вместе с австрийским и венгерским символами знатности — приставкой фон (von) к австрийской фамилии и титулом Маргиттаи (Margittai) в венгерском именовании — стал называться Янош фон Нейман или Нейман Маргиттаи Янош Лайош. Во время преподавания в Берлине и Гамбурге его называли Иоганн фон Нейман. Позже, после переселения в 1930-х годах в США, его имя на английский манер изменилось на Джон. Любопытно, что его братья после переезда в США получили совсем другие фамилии: Vonneumann и Newman. Первая, как можно заметить, является «сплавом» фамилии и приставки «фон», вторая же — дословным переводом фамилии с немецкого на английский.

Фон Нейман получил степень доктора философии по математике (с элементами экспериментальной физики и химии) в университете Будапешта в 23 года. Одновременно он изучал химическую инженерию в швейцарском Цюрихе (Макс фон Нейман полагал профессию математика недостаточной для того, чтобы обеспечить надёжное будущее сына). С 1926 по 1930 год Джон фон Нейман был приват-доцентом в Берлине.

В 1930 году фон Нейман был приглашён на преподавательскую должность в американский Принстонский университет. Был одним из первых приглашённых на работу в основанный в 1930 году научно-исследовательский Институт перспективных исследований, также расположенный в Принстоне, где с 1933 года и до самой смерти занимал профессорскую должность.

В 1936—1938 годах Алан Тьюринг защищал в институте под руководством Алонзо Чёрча докторскую диссертацию. Это случилось вскоре после публикации в 1936 году статьи Тьюринга «О вычислимых числах в применении к проблеме разрешимости» (англ. On Computable Numbers with an Application to the Entscheidungs problem), которая включала в себя концепции логического проектирования и универсальной машины. Фон Нейман, несомненно, был знаком с идеями Тьюринга, однако неизвестно, применял ли он их в проектировании IAS-машины десять лет спустя.

В 1937 году фон Нейман стал гражданином США. В 1938 он был награждён премией имени М. Бохера за свои работы в области анализа.

Фон Нейман был женат дважды. В первый раз он женился на Мариэтте Кёвеши (Mariette Kövesi) в 1930 году. Брак распался в 1937 году, а уже в 1938 он женился на Кларе Дэн (Klara Dan). От первой жены у фон Неймана родилась дочь Марина — в последующем известный экономист.

Первый успешный численный прогноз погоды был произведен в 1950 году с использованием компьютера ENIAC командой американских метеорологов совместно с Джоном фон Нейманом.

В 1957 году фон Нейман заболел раком кости, возможно, вызванным радиоактивным облучением при испытании атомной бомбы в Тихом океане или, может быть, при последующей работе в Лос-Аламосе, штат Нью-Мексико (его коллега, пионер ядерных исследований Энрико Ферми, умер от рака желудка на 54 году жизни). Через несколько месяцев после постановки диагноза фон Нейман умер в тяжёлых мучениях. Рак также поразил его мозг, практически лишив его возможности мыслить. Когда он лежал при смерти в госпитале Вальтера Рида, он шокировал своих друзей и знакомых просьбой поговорить с католическим священником.

Клеточные автоматы и живая клетка

Концепция создания клеточных автоматов являлась порождением антивиталистической идеологии (индоктринации), возможности создания жизни из мертвой материи. Аргументация виталистов в XIX веке не учитывала, что в мертвой материи возможно хранение информации — программы, которая может изменить мир (например, станок Жакара — см. Ганс Дриш). Нельзя сказать, что идея клеточных автоматов перевернула мир, но она нашла применение почти во всех областях современной науки.

Нейман ясно видел предел своих интеллектуальных возможностей и чувствовал, что не может воспринять некоторые высшие математические и философские идеи.

Фон Нейман был блестящим, изобретательным, действенным математиком, с потрясающей широты кругом научных интересов, которые простирались и за пределы математики. Он знал о своём техническом таланте. Его виртуозность в понимании сложнейших рассуждений и интуиция были развиты в высшей степени; и тем не менее, ему было далеко до абсолютной самоуверенности. Возможно, ему казалось, что он не обладает способностью интуитивно предугадывать новые истины на самых высших уровнях или даром к мниморациональному пониманию доказательств и формулировок новых теорем. Мне трудно это понять. Может быть, это объяснялось тем, что пару раз его опередил или даже превзошёл кто-то другой. К примеру, его разочаровало то, что он не первым решил теоремы Гёделя о полноте. Ему это было больше чем под силу, и наедине с самим собой он допускал возможность того, что Гильберт избрал ошибочный ход решения. Другой пример — доказательство Дж. Д. Биркгофом эргодической теоремы. Его доказательство было более убедительным, более интересным и более независимым по сравнению с доказательством Джонни.

Данная проблематика личного отношения к математике была очень близка Уламу, см., например:

Помню, как в четыре года я резвился на восточном ковре, разглядывая дивную вязь его узора. Помню высокую фигуру отца, стоящего рядом, и его улыбку. Помню, что подумал: «Он улыбается, потому как думает, что я ещё совсем ребёнок, но я-то знаю, как удивительны эти узоры!». Я не утверждаю, что тогда мне пришли в голову в точности эти слова, но я уверен, что эта мысль возникла у меня в тот момент, а не позднее. Я определённо чувствовал: «Я знаю что-то, чего не знает мой папа. Возможно, я знаю больше чем он».

Сравните с «Урожаями и посевам» Гротендика.

Владелец страницы: нет
Поделиться