Сельберг Атле
Сельберг Атле
14.06.1917 — 06.08.2007

Сельберг Атле — Биография

Атле Сельберг (норв. Atle Selberg, 14 июня 1917 — 6 августа 2007) — норвежский математик, известный своими работами в области аналитической теории чисел и теории автоморфных функций.

Сельберг родился в 1917 году в норвежском городе Лангесун (Langesund). Получил образование в Университете Осло, который окончил в 1943 году, получив степень Ph.D.

В 1942 году он доказал, что конечная доля всех нулей дзета-функции Римана лежит на критической прямой Re(s)=12. В 1947 году разработал «метод решета Сельберга», применявшийся в исследовании вопросов аналитической теории чисел. В 1948 году (параллельно с Эрдёшем) получил элементарное доказательство асимптотического закона распределения простых чисел, опубликовал его и в 1950 году был удостоен за это Филдсовской премии.

Переехав в США, начал работу в Институте перспективных исследований в Принстоне (штат Нью-Джерси). В 1956 году он опубликовал одну из наиболее значимых своих работ, в которой доказывал формулу, получившую название «Формула следа Сельберга» (применяется в теории автоморфных функций, в теории представлений и других разделах математики и физики).

В 1986 году за его работы по теории чисел, дискретным группам и автоморфным формам Сельберг был удостоен Премии Вольфа. Также он был избран членом Норвежской академии наук, Датской королевской академии наук и Американской академии гуманитарных и точных наук.

Сельберг был женат, имел двух детей. Скончался 6 августа 2007 года от сердечной недостаточности.

Гипотеза А. Сельберга

В 1942 году Атле Сельберг выдвинул гипотезу, что при фиксированном с условием , достаточно большом и , , промежуток содержит не менее вещественных нулей дзета-функции Римана . Сельберг доказал справедливость утверждения для случая .

В 1984 году А. А. Карацуба доказал гипотезу Сельберга.

Оценки А. Сельберга и А. А. Карацубы являются неулучшаемыми по порядку роста при .

В 1992 г. А. А. Карацуба доказал, что аналог гипотезы Сельберга справедлив для «почти всех» промежутков , , где — сколь угодно малое фиксированное положительное число. Метод, разработанный Карацубой позволяет исследовать нули дзета-функции Римана на «сверхкоротких» промежутках критической прямой, то есть на промежутках , длина которых растёт медленнее любой, даже сколь угодно малой, степени . В частности, он доказал, что для любых заданных чисел , с условием почти все промежутки при содержат не менее нулей функции . Эта оценка весьма близка к той, что следует из гипотезы Римана.

Владелец страницы: нет
Поделиться